1,112 research outputs found

    Remarks on the Blowup Criteria for Oldroyd Models

    Get PDF
    We provide a new method to prove and improve the Chemin-Masmoudi criterion for viscoelastic systems of Oldroyd type in \cite{CM} in two space dimensions. Our method is much easier than the one based on the well-known \textit{losing a priori estimate} and is expected to be easily adopted to other problems involving the losing \textit{a priori} estimate.Comment: to appear in JD

    Development of advanced control schemes for telerobot manipulators

    Get PDF
    To study space applications of telerobotics, Goddard Space Flight Center (NASA) has recently built a testbed composed mainly of a pair of redundant slave arms having seven degrees of freedom and a master hand controller system. The mathematical developments required for the computerized simulation study and motion control of the slave arms are presented. The slave arm forward kinematic transformation is presented which is derived using the D-H notation and is then reduced to its most simplified form suitable for real-time control applications. The vector cross product method is then applied to obtain the slave arm Jacobian matrix. Using the developed forward kinematic transformation and quaternions representation of the slave arm end-effector orientation, computer simulation is conducted to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of the Jacobian pseudo-inverse for various sampling times. In addition, the equivalence between Cartesian velocities and quaternion is also verified using computer simulation. The motion control of the slave arm is examined. Three control schemes, the joint-space adaptive control scheme, the Cartesian adaptive control scheme, and the hybrid position/force control scheme are proposed for controlling the motion of the slave arm end-effector. Development of the Cartesian adaptive control scheme is presented and some preliminary results of the remaining control schemes are presented and discussed

    Learning-based position control of a closed-kinematic chain robot end-effector

    Get PDF
    A trajectory control scheme whose design is based on learning theory, for a six-degree-of-freedom (DOF) robot end-effector built to study robotic assembly of NASA hardwares in space is presented. The control scheme consists of two control systems: the feedback control system and the learning control system. The feedback control system is designed using the concept of linearization about a selected operating point, and the method of pole placement so that the closed-loop linearized system is stabilized. The learning control scheme consisting of PD-type learning controllers, provides additional inputs to improve the end-effector performance after each trial. Experimental studies performed on a 2 DOF end-effector built at CUA, for three tracking cases show that actual trajectories approach desired trajectories as the number of trials increases. The tracking errors are substantially reduced after only five trials

    Joint-space adaptive control of a 6 DOF end-effector with closed-kinematic chain mechanism

    Get PDF
    The development is presented for a joint-space adaptive scheme that controls the joint position of a six-degree-of-freedom (DOF) robot end-effector performing fine and precise motion within a very limited workspace. The end-effector was built to study autonomous assembly of NASA hardware in space. The design of the adaptive controller is based on the concept of model reference adaptive control (MRAC) and Lyapunov direct method. In the development, it is assumed that the end-effector performs slowly varying motion. Computer simulation is performed to investigate the performance of the developed control scheme on position control of the end-effector. Simulation results manifest that the adaptive control scheme provides excellent tracking of several test paths

    Position control of redundant manipulators using an adaptive error-based control scheme

    Get PDF
    A Cartesian-space control scheme is developed to control the motion of kinematically redundant manipulators with 7 degrees of freedom (DOF). The control scheme consists mainly of proportional derivative (PD) controllers whose gains are adjusted by an adaptation law driven by the errors between the desired and actual trajectories. The adaptation law is derived using the concept of model reference adaptive control (MRAC) and Lyapunov direct method under the assumption that the manipulator performs non-compliant and slowly-varying motions. The developed control scheme is computationally efficient because its implementation does not require the computation of the manipulator dynamics. Computer simulation performed to evaluate the control scheme performance is presented and discussed

    Design of an adaptive controller for a telerobot manipulator

    Get PDF
    The design of a joint-space adaptive control scheme is presented for controlling the slave arm motion of a dual-arm telerobot system developed at Goddard Space Flight Center (GSFC) to study telerobotic operations in space. Each slave arm of the dual-arm system is a kinematically redundant manipulator with 7 degrees of freedom (DOF). Using the concept of model reference adaptive control (MRAC) and Lyapunov direct method, an adatation algorithm is derived which adjusts the PD controller gains of the control scheme. The development of the adaptive control scheme assumes that the slave arm motion is non-compliant and slowly-varying. The implementation of the derived control scheme does not need the computation of the manipulator dynamics, which makes the control scheme sufficiently fast for real-time applications. Computer simulation study performed for the 7-DOF slave arm shows that the developed control scheme can efficiently adapt to sudden change in payloads while tracking various test trajectories such as ramp or sinusoids with negligible position errors
    corecore